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Abstract. A q–deformed anharmonic oscillator is defined within the framework of q–deformed quantum
mechanics. It is shown that the Rayleigh–Schrödinger perturbation series for the bounded spectrum con-
verges to exact eigenstates and eigenvalues, for q close to 1. The radius of convergence becomes zero in the
undeformed limit.

1 Introduction

The anharmonic oscillator H = ωa†a + γX4 is a basic
quantum mechanical problem with one particularly inter-
esting feature: its perturbation series diverges, but nev-
ertheless there exist eigenstates and energies which are
smooth as the (positive) coupling constant γ goes to zero
[1–3]. A similar phenomenon is expected to occur in many
interacting quantum field theories. The anharmonic oscil-
lator can in fact be considered as a (0 + 1)–dimensional
ϕ4 ”field” theory with one degree of freedom.

In this paper, we study the analog of this model in the
framework of q–deformed quantum mechanics, based on
the q–deformed Heisenberg algebra introduced in [4]. In
particular, one would like to know how the perturbation
theory of the q–deformed anharmonic oscillator behaves
compared to the undeformed case. This is of interest in
view of a possible q–deformation of field theory, which is
expected to be less singular than field theory based on
ordinary manifolds, since q–deformation generically puts
physics on a q–lattice [4,5]. With this motivation, we study
the perturbation theory of the anharmonic oscillator in
terms of the q–deformed harmonic oscillator, which was
introduced in [6,7] and realized in the framework of q–
deformed quantum mechanics in [8].

There is considerable freedom in defining a q–deformed
anharmonic oscillator for q 6= 1. Taking advantage of this
freedom, we show that for a suitable definition of the an-
harmonic oscillator, the perturbation series converges to
exact eigenvalues and eigenstates for 1 < q < 1.06 with a
certain radius of convergence in γ. In the limit q → 1, the
model reduces to the usual anharmonic oscillator, and the
radius of convergence goes to zero. The upper limit on q
is not significant.

a e-mail: Andrea.Pollok@physik.uni-muenchen.de
b e-mail: Harold.Steinacker@physik.uni-muenchen.de

This paper is organized as follows: In Sect. 2 we re-
view the q-deformed harmonic oscillator and its spectrum,
and calculate the relevant matrix elements. In Sect. 3, the
perturbation series for eigenvalues and eigenstates is dis-
cussed. Some estimates for the matrix elements are given
in the Appendix.

2 The q-deformed harmonic oscillator

In this section, we give a brief review of the q–deformed
harmonic oscillator, and its realization in terms of a q–
deformed Heisenberg algebra. For a more detailed discus-
sion, see [8] and [4].

The q-deformed Heisenberg algebra is the star–algebra
generated by X, P, U with the relations [4]

q
1
2 XP − q− 1

2 PX = iU (1)
UX = q−1XU, UP = qPU.

We assume q > 1 to be real. The star structure is such
that X and P are hermitian, and U is unitary:

X = X†, P = P †, U† = U−1. (2)

This algebra has the following (momentum–space) rep-
resentation [4]:

P |n, σ〉 = σqn|n, σ〉
U |n, σ〉 = |n − 1, σ〉

U−1|n, σ〉 = |n + 1, σ〉
X|n, σ〉 = iσ

q−n

q − q−1 (q
1
2 |n − 1, σ〉 − q− 1

2 |n + 1, σ〉)
〈n, σ|m, σ′〉 = δn,mδσ,σ′ (3)

with n, m ∈ IN and σ, σ′ = ±1. The completion of these
states defines a Hilbert space H.
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The two values of σ describe positive respectively neg-
ative momenta. (3) is a star–representation, i.e. the star
is implemented as the adjoint of an operator, and both X
and P have selfadjoint extensions. That is the reason for
introducing σ, see [9].

This is a starting point for studying q–deformed quan-
tum mechanics [10–12,4]. In particular, one can define q–
deformed creation and anihilation operators as follows:

a = αU−2M + βU−MP (4)

a† = ᾱU2M + β̄PUM

with M ∈ IN , and α, β ∈ C| . They satisfy the Biedenharn–
Macfarlane algebra [6,7]:

aa† − q−2Ma†a = (1 − q−2M )αᾱ = 1 (5)

where we fix α = i√
1−q−2M

. The occupation number op-

erator is defined as

n̂ = a†a = αᾱ + ββ̄P 2 + αβ̄(UM + qMU−M )P. (6)

Now one can write down the following Hamiltonian, which
constitutes the q–deformed harmonic oscillator:

H0 = ωa†a (7)

The spectrum of H0 acting on H consists of a bounded
spectrum with eigenvalues E

(0)
n = ω[n]M = ω 1−q−2nM

1−q−2M

which is 2M–fold degenerate, and an unbounded spectrum
with eigenvalues ω(q2mME

(0)
0 + 1−q2mM

1−q−2M ). The 2M ground
states of the bounded spectrum are

|0〉(M)
σ,µ =

∞∑
n=−∞

c0

(
−σ

α

β

)n

×q− 1
2 (Mn2+Mn+2µn)|Mn + µ, σ〉,

0 ≤ µ < M. (8)

The existence of an unbounded spectrum beyond E∞ =
ω

1−q−2M is clear in view of (5), since P is an unbounded
operator on H. For simplicity, we will only consider M = 1
from now on, and omit the labels µ and M .

So far, β was arbitrary. Requiring that the a, a† are
smooth for q → 1 and become the usual (undeformed)
creation and anihilation operators in the limit, one finds
[8] that

α =
i√

1 − q−2
, β =

i√
2mω

(9)

where m is the mass. For this choice, H0 can be interpreted
as a q–deformation of the usual harmonic oscillator, and
this will be understood in the following. The normalized
states of the bounded spectrum are

|n〉σ =
1√
[n]

(a†)n|0〉σ, (10)

where [n] = 1−q−2n

1−q−2 . We define Hb,± ⊂ H to be the clo-
sure of the space spanned by the |n〉±1. As q → 1, Hb,+

becomes the Hilbert space of the usual harmonic oscilla-
tor, while the unbounded spectrum disappears at infinity,
and the support of the states with σ = −1 goes to −∞ in
the momentum representation. We will thus concentrate
on Hb,+.

The eigenstates of H0 can also be written in terms of
the q–deformed Hermite polynomials, which satisfy (see
[13]):

ξH(q)
n (ξ) =

√
qq2n

2
(H(q)

n+1(ξ) + 2q−2[n]H(q)
n−1(ξ)) (11)

Defining ξ =
√

mωX, one has

|n〉σ =
1√

2
n
[n]!

H(q)
n (ξ)|0〉σ.

Using these Hermite polynomials, it is straightforward
to calculate the action of X on an eigenstate |n〉σ, and it
follows in particular that X · Hb,+ ⊂ Hb,+. This will be
important for the perturbation theory below.

Now we turn to the anharmonic oscillator. The unde-
formed anharmonic oscillator is defined by H = ωa†a +
γX4 for γ > 0, thus one might naively take the same ex-
pression for q > 1, and study its perturbation theory. The
relevant matrix elements can be calculated e.g. using (11),
and we find the following results [14]:

〈n|X4|n〉 =
(

1
2mω

)2

q8n+6 ([n + 1]([n + 2]

+q−4[n + 1] + q−8[n])q−8[n]([n + 1]
+q−4[n] + q−8[n − 1])

)
〈n + 4|X4|n〉 =

(
1

2mω

)2

q8n+14

×
√

[n + 1][n + 2][n + 3][n + 4]

〈n + 2|X4|n〉 =
(

1
2mω

)2

q8n+12
√

[n + 1][n + 2]([n + 3]

+q−4[n + 2] + q−8[n + 1] + q−12[n]) (12)

They are independent of σ which is suppressed. All other
nonvanishing matrix elements can be obtained from those
by hermiticity.

Looking at the powers of q in the matrix elements, one
quickly finds that the perturbation series diverges even
faster than in the undeformed case.

However, it is important to realize that there is no
reason for considering the same expression for H as in the
undeformed case; the only requirement one has to impose
is that H should reduce to the usual anharmonic oscillator
as q → 1. Therefore we might just as well consider the
Hamiltonian

H = H0 + γH ′ (13)
with

H ′ =
1
2
(X4Q̂5 + Q̂5X4), where

Q̂ = (1 − a†a(1 − q−2)). (14)
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Q̂ satisfies
Q̂|n〉 = q−2n|n〉. (15)

The matrix elements 〈n|H ′|m〉 can be easily obtained
from (12), see Fig. 2. As is shown in the Appendix, they
have the following upper bound:

〈n|H ′|m〉 < C(q) := [3]4[2]8q−2nmax+10[nmax]2

=
4q10[3]4[2]8

81(1 − q−2)2
(16)

for 1 < q < 1.06, where nmax = ln 3
2 ln q . In view of the results

of the next section, we define (13) to be the q–deformed
anharmonic oscillator.

3 Perturbation expansion

We will use the standard Rayleigh-Schrödinger perturba-
tion formulas for the eigenstates and eigenvalues of

H = H0 + H1 = H0 + γH ′ (17)

in terms of the unperturbed ones, H0|n〉 = E
(0)
n |n〉:

∆En =
∞∑

k=0

E(k)
n (∆En, γ) (18)

:=
∞∑

k=0

〈n|H1

(
1

E
(0)
n − H0

Qn (H1 − ∆En)

)k

|n〉

where Qn = (1 − |n〉〈n|), and

|En〉 = |n〉 +
∞∑

k=1

∑
n1,...nk

nr 6=n

×
|n1〉

(
k∏

j=2
〈nj−1|H1 − ∆En|nj〉

)
〈nk|H1|n〉

k∏
j=1

(E(0)
n − E

(0)
nj )

.

(19)

Strictly speaking, we are of course dealing with a de-
generate problem (since σ = ±1); however as already ex-
plained, X and Q̂ leave Hb,+ invariant, thus the two values
of σ do not interfere, and we can restrict ourselves to the
σ = +1 sector. This will be understood in the following.
We will show that these series in fact converge to exact
eigenvalues and eigenstates of the q-deformed anharmonic
oscillator, for a certain range of γ which depends on q.

3.1 Energy levels

If γ and ∆En are not real, then H1 is understood to act
on the right in the above formulas, so that the matrix el-
ements can be continued analytically in γ and ∆En. We

show first that the sum in (19) is absolutely convergent
for |∆En| < ω/5 and |γ| < γ(q), where γ(q) > 0 provided
q > 1, see (22). Thus the rhs of (19) is an analytic func-
tion of ∆En and γ in that domain, which can be solved
for ∆En by the implicit function theorem, defining an an-
alytic function ∆En(γ).

To see that the sum in (19) is (absolutely) convergent
for a certain range of ∆En and γ, we first write E

(m)
n more

explicitely:

E(1)
n = 〈n|H1|n〉

E(2)
n =

∑
n1

n1 6=n

〈n|H1|n1〉〈n1|H1|n〉
(E(0)

n − E
(0)
n1 )

E(k)
n (∆En, γ) =

∑
n1,n2,...,nk−1

nr 6=n

×
〈n|H1|n1〉

(
k−1∏
j=2

〈nj−1|H1 − ∆En|nj〉
)

〈nk−1|H1|n〉

(E(0)
n − E

(0)
nk−1)(E

(0)
n − E

(0)
nk−2) . . . (E(0)

n − E
(0)
n1 )

for k ≥ 3 (20)

As is shown in Appendix A, the following estimate is valid
for q ∈]1; 1.06[:

|E(k)
n (∆En, γ)| < Ē(k)

n (∆En, γ, q)

:=
(|γ|C(q))2(|γ|C(q) + |∆En|)k−25k−1

([2]ωq−2n)k−1

for k ≥ 2, (21)

The factor 5 comes from the fact that for any given
nj , there are only 5 possible nj+1 such that the matrix
elements in the perturbation expansion do not vanish (see
(12)).

The series (19) is absolutely convergent if the following
condition holds:∣∣∣∣∣ Ē

(k+1)
n

Ē
(k)
n

∣∣∣∣∣ < θ for some θ < 1

Now

∣∣ Ē(k+1)
n

Ē
(k)
n

∣∣ = 5
|γ|C(q) + |∆En|

[2]ωq−2n
< θ,

and we find that the condition holds e.g. for |∆En| < ω/5
and

|γ| ≤ γ(q) :=
ω([2]q−2n − 1)

5C(q)
. (22)

Therefore we have shown that in this domain, the rhs
of (18) defines an analytic function in ∆En and γ. Notice
that γ(q) → 0 as q → 1.

Now consider the equation

G(∆En, γ) :=
∞∑

k=0

E(k)
n (∆En, γ) − ∆En = 0.
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Fig. 1. Domain of convergence, for ω = 1

In the above domain, this is a uniformly convergent series
of analytic functions (for fixed q in the interval ]1, 1.06[,
say). But then using (20), one sees that

∂
∂∆En

∑∞
k=0 E

(k)
n (∆En, γ)

∣∣∣
∆En=0

γ=0

= 0, i.e.

∂

∂∆En
G(∆En, γ) 6= 0 (23)

for γ and ∆En in a neighborhood of 0, by analyticity.
Now the implicit function theorem states that there is a
function ∆En(γ) which solves (23) and satisfies ∆En(0) =
0. Moreover, ∆En(γ) is analytic in a neighborhood of 0,
and |∆En| < ω/5 holds automatically if γ is small enough.

The domain of convergence γ(q) is shown in Fig. 1 for
q ∈]1; 1.06[ and ω = 1. In particular, γ(q) goes to zero
for q → 1, in accordance with the well–known fact that
the perturbation series for the undeformed anharmonic
oscillator is divergent [2].

3.2 Eigenstates

In this section, we show that (19) converges in Hb,+ ⊂ H
for |γ| < γ(q) and 1 < q < 1.06, where ∆En = ∆En(γ) is
now the perturbed energy found in the previous section.
To do this, we have to show that

∞∑
m=0

|〈m|En〉|2 < ∞, (24)

or more explicitely

〈En|En〉 =
∞∑

m=0

|〈m|En〉|2

=
∞∑

m=0

∣∣∣∣∣δm,n +
∞∑

k=1

∑
n1,...nk

nr 6=n

×
δm,n1

(
k∏

j=2
〈nj−1|H1 − ∆En|nj〉

)
〈nk|H1|n〉

k∏
j=1

(E(0)
n − E

(0)
nj )

∣∣∣∣∣
2

From the form of the matrix elements (12), we see that
the second term is nonzero only for k ≥ |m−n|

4 , therefore

〈En|En〉 ≤ 1 +
∞∑

m=0

∑
k≥ |m−n|

4

×
(

(|γ|C(q) + |∆En|)k−1|γ|C(q)5k

([2]q−2nω)k

)2

≤ 1 +
∞∑

m=0

(
5
|γ|C(q) + |∆En|

[2]q−2nω

) |m−n|
2

×
( ∞∑

k=0

(
5
|γ|C(q) + |∆En|

[2]q−2nω

)2k
)

for 1 < q < 1.06. Clearly this converges for γ in the an-
alyticity domain defined above (such that |∆En| < ω/5
as before), therefore the series (19) converges in Hb,+. Fi-
nally, both H0 and H ′ leave Hb,+ ⊂ H invariant and are
bounded operators on Hb,+ (H ′ is bounded because of
(27) and the fact that H ′ acting on |n〉 has no more that
5 nonvanishing components in terms of that basis). Now
it follows that |En〉 and E

(0)
n +∆En are indeed eigenstates

and eigenvalues of the full anharmonic oscillator.
As already mentioned, it is known [2] that the unde-

formed anharmonic oscillator does have nonperturbative
eigenstates and energies for γ > 0, which are nevertheless
smooth as γ goes to zero from above. Now the formulas
(19) ff. can be analytically continued in q as well, and
one would expect that the above domain of analyticity for
∆En and γ can be extended to include q = 1 and positive
real axis of γ. However, at present we are not able to show
this.
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Appendix: Matrix elements

Because [n] is an increasing function in n, we have the
following estimates:

1
2
γ(1 + q−40)q14−2n[n]2

< 〈n + 4|H ′|n〉
<

1
2
γ(1 + q−40)q14−2n[n + 4]2
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Fig. 2. The matrix elements 〈n|H ′|n〉 for q ∈ [1.001, 1.002]
depending on n

1
2
γ(1 + q−20)q12−2n[4]4[n]2

< 〈n + 2|H ′|n〉
<

1
2
γ(1 + q−20)q12−2n[4]4[n + 3]2

γq−2n+6[3]4[2]8[n]2

< 〈n|H ′|n〉
< γq−2n+6[3]4[2]8[n + 2]2 (25)

with

[n]i :=
1 − q−ni

1 − q−i
, [n] =

1 − q−2n

1 − q−2 ,

See Fig. 2 for a plot of 〈n|H ′|n〉.
To simplify this, consider the function q−2n[n]2 for

n ∈ IR, which takes its maximum value 4
81(1−q−2)2 at

n = nmax,

nmax :=
ln 3
2 ln q

. (26)

The matrix elements have a maximum for n close to nmax.
More precisely, we can show the following estimate:

|〈n + i|H ′|n〉| < C(q) := q−2nmax+10[3]4[2]8[nmax]2

=
4q10[3]4[2]8

81(1 − q−2)2
(27)

for all n, m ∈ IN . Indeed,

〈n + 4|H ′|n〉 <
1
2
(1 + q−40)q14−2n[n + 4]2

=
1
2
(1 + q−40)q22q−2(n+4)[n + 4]2

≤ 1
2
(1 + q−40)q22q−2nmax [nmax]2,

furthermore

〈n + 2|H ′|n〉 <
1
2
(1 + q−20)q18[4]4q−2(n+3)[n + 3]2

≤ 1
2
(1 + q−20)q18[4]4q−2nmax [nmax]2, (28)

and

〈n|H ′|n〉 ≤ q10[3]4[2]8q−2nmax [nmax]2 = C(q) (29)

Now for 1 ≤ q < 1.06, one has

1 <
2q−16[3]4[2]8

1 + q−40 (30)

(for i = 4) and

1 <
2[3]4[2]8

q12[4]4(1 + q−20)
(31)

(for i = 1). Combining these estimates, we obtain (27).
Furthermore |E(0)

n − E
(0)
n±i| ≥ [i]q−2nω, therefore |E(0)

nj −
E

(0)
n | ≥ [2]q−2nω in the denominators of the perturbation

expansion, since i ≥ 2. Now (21) follows, because for any
given nj in the perturbation series, there are at most 5 pos-
sible nj+1 such that 〈nj |H ′|nj+1〉 is nonzero; this means
that the number of terms at order k is at most 5k−1.
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